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ABSTRACT

This document is the first of three volutes which
present techniques and methods for developing efficient Monte
Carlo simulation: Each volume presents techniques for re-
ducing computational effort in one of the following areas:

Vol. I - Selecting Probablility Distributions, Vol. II - Random
Number Generation For Selected Probability Dlstributions,
and Vol. Il - Variance Reduction. ‘

This volume provides a straightforward approach and
associated techniques for selecting the most appropriate pro-
bability distributions for use in Monte Carlo simula’nns. Pact
I, BASIC CONSIDERATIONS, presents the underlng concepts
and principles for selecting probability distributions. Part I,
SELECTION OF DISTRIBUTIONS, gives the mathematicag models
representing stochastic processes and presents step-by-step
procedures for identification and selection of the appropriate
probability distributions based upon the degree of kxiowledge and
available data for the random variable under study.
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EXECUTIVE SUMMARY

Monte Carlo simulation is one of the most powerful and commonly
used techniques for analyzing complex physical problems. Applications
can be found in many diverse areas from radiation transport to river basin
modeling. Important Navy applications include: analysis of antisubmarine
warfare exercises and operations, prediction of aircraft or sensor perform-
ance, tactical analysis, and matrix game solutions where random processes
are considered to be of particular importance. The range of. épplications
has been broadening and the size, complexity, and computational effort re-
quired have been increasing. However, such developments are expected
and desirable since increased realism is concomitant with more complex and
extensive problem descriptions.

In recognition of such trends, the requirements for improved simu-
lation techniques are becoming more pressing. Unfortunately, methods for
achieving greater efficiency are frequently overlooked in developing simula-
tions. This can generally be attributed to one or more of the following '

reasons:

e Analysts usually seek advanced computer systems to
perform more complex simulation studies by exploit-
ing increased speed and/or storage capabilities. This
is often achieved at a considerably increased expense.

.¢ Many efficient simulation methods have evolved for
specialized applications. For example, some of the
most impressive Monte Carlo techniques have been
developed in radiation transport, a discipline that does
not overlap into areas where even a small number of
simulation analysts are working.

e Xnown techniques are not developed to the point where
they can be easily understood or applied by even a
small fraction of the analysts who are performing simu-
lation studies or developing simulation models.
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In addition to the above reasons, comprehensive references describing
efficient methodologies to improve Monte Carlo simulation are not avail-
able. It is the intent of these volumes to help alleviate the above short-
comings in Monte Carlo simulation.

This document is the first of three volumes which present techniques
and methods for developing efficient Monte Carlo simulations. Each volume
is essentially a self-contained discussion of useful techniques which can be
applied in reducing computational effort in one of the following three major
aspects of Monte Carlo simulation:

o Selecting Probability Distributions - Volume I

e Random Number Generation for Selected Probability
Distributions - Volume II

e Variance Reduction - Volume I

The purpose of these volumes is to provide guidance in developing
Monte Carlo simulations that accurately reflect the behavior of various
characteristics of the system being simulated and are most efficient in
terms of computational effort. The basic intent is to provide understanding
of the concepts and methods for reducing analysis and computational effort
as well as to serve as a practical guide for their application. They hLave
been prepared primarily for the systems analyst and computer programmer
who have a basic background and experinece in simulation and elementary -
statistics. Thus, the material is presented so as to preclude extensive
knowledge of statistical techniques or of extensive literature search., How-
ever, it is assumed the reader has a grasp of the fundamentals of Monte
Carlo methods, simulation modeling, and elementary statistics.

viii



1. INTRODUCTION

The starting point in developing any Monte Carlo simulation is the
construction of mathematical models which describe the stochastic be-
havior of the variables in the process under study. When the underlying
processes are well understood and the functional forms of the variables
are known, development of a model is straightforward. However, in many
applications the exact functional form of the variable is not known, thus re-
quiring selection f;0m among a myriad of possible distributions to find the
one that will best represent the process. This volume provides a straight-
forward approach and associated techniques for selecting the most appro-
priate probability distributions for use in Monte Carlo simulations.

Part I of this volume, BASIC CONSIDERATIONS, presents the under-
lying concepts and principles to be used in the selection of probability dis-
tributions. This background information provides the reader with an under-
standing of the important considerations, tasks, and methods and procedures
involved in dealing with simulation events characterized by random variables.

Following Part I, the reader will find in Part I, SELECTION OF
DISTRIBUTIONS, the mathematical models which will represent the stochastic
behavior of the process as accurately as the data and understanding of the
processes will allow. Part II presents step-by-step procedures for the
identification and selection of appropriate probability distributions. Part IT
applies the rationale developed in Part I to the problems of developing dis-
tributions based on varying amounts of data and depth of understanding of
the processes being simulated.

This volume also includes additional information useful in the selec-
tion of probability distributions. Appendix A contains buckground information



of the complex parametric families of distributions which will be useful

for the reader who has not encountered these distributions before. Appen-
dix B contains tables which are needed in making computations involv}ng ,; _
distribution fitting and testing. Appendix C is an abstracted bibliography

of publications relating to the subjects of probability distribution identifica-
tion and selection.



PART I

BASIC CONSIDERATIONS



2. FUNDAMENTALS OF DISTRIBUTION SELECTION

Selection of an appropriate probability distribution for a given
random variable in a simulation requires gathering and evaluating all
the available facts, data, and knowledg: concerning each variable. It
is also important to know how the particular process which any given
variable represents relates to the entire simulation model. For Monte
Carlo applications this includes careful investigation of:

e Each individual process or event

e Underlying theory of the pirocess
e Data representing the variability of the process

e Sensitivity of the process being simulated to probable
values of the variable

e Simulation programming considerations

When the variable under consideration is just one among many vari-
ables which affect the overall problem or system, the simulation is often
not very sensitive to the choice of the distribution. This can be likened
to the phenomenon of summing a series of raadom variables, none of which
dominates the sum. In this case the total tends to have a normal distri-
bution irrespective of the individual distributions (see Refs. 7,27). In other
cases, the selection of a distribution is more critical to effective simulation.
For example, when only a few variables dominate the process or the process
is greatly influenced by rare occurrences (e.g., failure of a critical high
reliability component) the selection of probability distributions becomes
of paramount importance. (.21

Choosing the form of probability distributions is often a trade-
off between theoretical justification and empirical evidence. Typically,
some form of parametric distribution can be justified, such as the

Procading naaa hlank



normal, uniform, binomial, or Bernoulli distribution. Available data
can then be used to estimate its parameters. In the absence of empirical
data, one is forced to choose distributions on either theoretical or intui-
tive grounds, or often to use several distributions and conduct sensitivity
or worst-case analyses. At the other extreme, where empirical data

is abundant, either the histogram can be used or more elaborate para-
metric models can be employed.

The final choice of a particular distribution type is, of course,
also dependent on ease of implementation. Computer storage space,
computation time, and ease of programming are key considerations in
most simulations. Generating random variables from a parametric
distribution'requires taking an inverse of the cumulative distribution
function or using other random number generation techniques (see Vol-
ume II). For some distributions, such as the exponential or uniform,
the inverse operation is a simple computation. For others, such as
the normal, relatively simple techniques are available, Histograms
are also fairly easy to use in computer simulations. Here, only a list
of numbers must be stored (the more variable and detailed the histogram,
of course, the longer the list). For many distributions, however, iz-
verse algorithms for generation of random numbers do not exist, and
other methods require lengthy computation. In this case, a com-
promise must be made between ease of computation and simulation accu-
racy. Making an estimate of how sensitive the total simulation will be
to individual probability distribution assumptions is important in deter-
mining this compromise.

2.1 BASIS FOR MAKING SELECTIONS

Before proceeding to the techniques of distribution selection
and their application in simulation development, it is necessary to un-
derstand the underlying concepts for making selections. Basically, the

6



selection process described in Part II depends on two factors: the
extent of knowledge of the process under study (qualitative) and the
amount of date available (quantitative). Knowledge of the process refers
to the level of understanding of its behavior and characteristics. For
example, it is possible in some cases to be quite certain that the fre-
quency distribution of a random variable is normal ba;sed on familiarity
with the process. At the other extreme, little or nothing may be known.
Similarly, the amount of data describing a particular variable may range
from extensive to none. Each combination of the state of knowledge and
amount of data poses particular problems in selecting the most appro-
priate distribution.

2.2 QUALITATIVE BASIS FOR SELECTION

Developing an understanding of some random process involves
analysis to characterize the process. In general, such efforts attempt
to identify the process on the basis of:

¢ Similarity to some other process whose behavior is known
e Underlying theory
e Certain qualitative aspects.

Often a process can be likened to some other, the behavior of
which is known. In such circumstances, it can be reasonably justi-
fied that this known distribution might apply to the one under study.
For example, consider the simulation of a process involving the
human performance of some manual task. Even though the task may
bear no particular resemblance to one in which the distribution is
known, an assumption of similarity is reasonable. The frequency
distribution of time of performance is likely to be from the same
family of distributions even thcugh the actual process might be quite
different.



Many activities for which stochastic models must be developed
can, at least generally, be identified by some applicable theory. Con-
sider the case in which some repetitive human activity is involved such
as in maintenance. Maintainability theory would indicate a strong like-
lihood that the frequency distribution of time to perform would have a
log normal or a gamma distribution. Similarly, if the failure of elec-
tronic parts were to be modeled, it could be assumed that an exponen-
tial or possibly a Weibull might be applicable (53). Such reasoning is
a fundamental part of the task of distribution selection.

There are, of course, many situations in which a theoretical
basis for a particular distribution can be established. Consider the
shots fired at a target or the velocity of a molecule in a stable solution.
Under fairly weak conditions the velocity of the molecule or the devia-
tion of shots (in three-dimensional space) from the bull's eye can be
shown to have a Maxwell distribution (27). The component of velocity
in any direction or the projection of shots onto any axis through the
bull's eye follows the normal distribution. In two dimensions the re-
sulting distribution is the Rayleigh. If the process being modeled in-
volves reliability, the exponential distribution reflects the behavior of
an item with a constant failure rate. If the process involves waiting
or queueing phenomena, the exponential can be used to depict random
arrival and service times. The gamma distribution also has wide
application since it is related to the exponential distribution. The
number of occurences up to a given point in time has a gamma distri-
bution if the time between occurrences follows an exponential distribution.

In some cases, it will not be possible to relate the process be-
ing examined to anything which is known. This may be either because
little understanding of the process exists or it simply bears no relation
to any process whose behavior can be described on a theoretical basis.

8



However, there still 1aay be some clues which are useful in identifying
an applicable distribution, particularly where some data exist. A num-
ber of qualitative aspects of the process can be helpful. These include,
for example, consideration of whether the variable is discrete or con-
tinuous, bounded, symmetric, or can be described in some other sim-
ilar ways. Such clues, although probably not sufficient for positive
identification above, are useful in making a rational selection of a
distribution.

2.3 QUANTITATIVE BASIS FOR SELECTION

One of the most common problems in simulaiion is not having,
or not being able to obtain, the data necessary to describe a particular
variable. Collecting it may be too time consuming or expensive. In
some cases it is simply not possible. Consequently, the amount of data
available is one of the major considerations in the selection of prob-
ability distributions. -

Where sufficient data are available, an empirical approach
can be used. This means essentially using the data to derive a
model. Combined with the state of knowledge of the process being
modeled, graphical and anmalytical techniques can be employed to
select the distribution most representative of the data.

In those cases where acquisition of the data is difficult, the
application of the methodology of Part II can be useful in determin-
ing whether such effort is warranted. If a distribution can, in fact,
be selected with little data, there may be no justification for collect-
ing more. If, on the other hand, a distribution cannot be identified
and the simulation results are sensitive to that particular variable,
additional data may be essential for developing a valid model.



3. TECHNIQUES USED IN DISTRIBUTION SELECTION

Specific techniques for selecting a particular stochastic model
depend on the information and data available. The situation can range
from having practically nothing to work with to almost certain specifica-
tion of the model based on sound theoretical and empirical evidence.

The development of the theoretical evidence is entirely qualitative.
Development of the empirical evidence requires the use of a number of
quantitative methods. These include:

Sensitivity analysis
Graphical analysis
Parameter estimation
Goodness-of-fit-testing.

Each of these is introduced briefly in the following sections.

3.1 SENSITIVITY ANALYSIS

The purpose of sersitivity analysis is to determine the extent
to which the outcome of an analysis is dependent upon a particular’
variable or agssumption. It is particularly applicable in simulation
where little or no data is available to characterize some random var-
iables. In such a situation, sensitivity analysis can indicate whether
or not the behavior of the variable must be more accurately known.
If, for instance, the outcome of the simulation is not sensitive to the
variable, no further effort to characterize it is necessary. However,
if it does prove sensitive, an attempt to develop an accurate distribu-
tion model is warranted.

The only practical way to perform the sensitivity analysis is
to perform a simulation varying the values or assumptions concerning
the variable in question. Comparison of the results using standard

11
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statistical tests can reveal whether significant duferftences are pro-
duced (see Sections 3.4 and 9.). This is not so formida.ble a task as /
it might at first appear. If the simulation is'to have any real validity

in the first place, the behavior of most o{ the variables must be knowr/
If only a few variables can be accurately escribed, a simulation - 5{'
merely produces a precise but inaccurate result.

3.2 GRAPHICAL ANALYSIS

One of the topics in elementary applied statistics is the con-
struction of frequency histograms and cumulative frequency polygons.
These procedures provide one means for identifying appropriate dis-
tribution models under the proper circumstances. Where such tech-
niques are applicable they do offer the advantage of relative simplicity.
They are most useful when there is some knowledge of the process and
at least minimal data available,

The histogram is constructed from data concerning the vari-
able. It carries with it all the present empirical information available
on the variable, nothing more. It does not try to estimate probable be-
havior. If rare events have not been observed, for instance, it will
assign zero probability to their occurrence. Since it uses all data, it
also perpetuates the mistakes of erroneous observations and may
describe a model that is not valid.

The most common graphical procedure is the construction of
the frequency histogram. This is simply a plot of the frequency with
which each of various values occurs in the sample data. The histo-
gram is useful in two ways. It provides visual evidence of the shape
of the distribution which can be useful in selecting a distribution. It may
also be used directly in the simulation as the model of the process.

12



When data is abundant the use of the histogram is often adequate
for many Monte Carlo applications. In using the histogram, care must
always be exercised to remove obvious errors and to consider low
probability events. When only limited data is available the histogram
approach suffers from sampling peculiarities and from lack of observa-
tions in any tails of the distribution. In this case more effective distri-
butions can be developed by taking into consideration other informa-
tion about the behavior of the variable or by obtaining additional infor-
mation from the data, e.g., by estimating higher moments. This
information can range from an understanding of the theoretical nature
of the variable to intuition. It might be assumed, for example, that
the underlying real distribution is continuous; then smoothing proce-
dures can be applied to the histogram to obtain a continuous curve.

Another graphical procedure useful in the selection of proba-
bility distributions involves the use of probability paper. As with the
histogram, there is a large element of subjectivity in this procedure.

It involves selection of an appropriate probability paper from those avail-
able and plotting the sample distribution function. Judgment is required
in deciding whether the plot sufficiently approximates a straight line.

The use of graphical procedures in simulation development
is described in Section 8, Part II.

3.3 PARAMETER E3TIMATION

A parametric distribution is defined to be a functional or
analytical representation for a probability distribution which depends
on one or more parameters. Although use of such distributions re-
quires that the parameter(s) be estimated, there are a number of
reasons for using a parametric distribution function rather than a

13



histogram in developing a mathematical model. In particular, a parame-
tric distribution: '

® Provides a convenient means for inclusion of additional
information about the variable (such as known upper and
lower limits on the data).

e Allows meaningful extrapolation into the tail(s) of the
distribution and into regions where no data was available.

e Allows incorporation of the additional information inher-
ent in the shape of the distribution if there is a theoretical
justification.

e Provides for a reproducible means of representing the
data since freehand "fit'" to the same data will vary from
person to person.

e Provides important summary information about the vari-
able in the form of estimated parameters of the fitted
distribution.

e Provides a more compact representation of the random
variable usually resulting in less data storage requirements.

e Allows construction of reasonable and convenient models
in cases of no data or very limite'd data.

e Provides for efficient and convenient random number gen-
eration in most cases.

e Facilitates analytic (rather than simulation) studies of
portions of the process.

e Permits a convenient means whereby analysis of the sen-
sitivity to the shape of the distribution can be accomplished.

To facilitate the presentation of parametric distributions, the
individual parametric families have been classified as being either of
a simple or of a complex nature. The difference between these two

14



classifications is mainly the number of parameters necessary to
describe the distribution. The simple distributions are character-
ized by no more than two parameters, the complex by more than two.

The other distinguishing feature is that simple distributions
are those which are commonly encountered, relatively easy to recog-
nize, and have some theoretical basis for their functional form and
application. Thus, simple parametric families of distributions can
often be derived from assumptions about the process generating the
random variable or from graphical evidence based on the data.

The complex parametric families generally do not have a
"nice" physical interpretation or a simple functional form. They
can be viewed more as abstract inventions which admit enough shapes
to insure a reasonable fit to any set of observations. They also pro-
vide greater flexibility than simple distributions in projecting events
of the process that would appear in the tails of the distribution.

3.3.1 Simple Parametric Distributions

The simple distributions include, but are not limited to, the
rormal, gamma, binomial, exponential, and other distributions which
can be defined by at most two parameters. For the purposes of select~
ing an appropriate probability model, a simple distribution will be in-
dicated by the underlying theory of the process or by preliminary selec-
tion using graphical procedures referred to previously.

One of the most common and useful of the simple continuous
probability functions is the normal distribution. Much of the appeal
of this distribution is based on a the central limit theorem. In essence,
this states that the sum of independent variables tends to be normally
distributed. (27) This assumes, of course, that none of the individual

15
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elements of the sum dominates its behavior. Since many variables which
are modeled in Monte Carlo simulations are in reality derived from
several variables, the assumption of a normal distribution can often be
justified.

Since simple parametric distributions are discussed in detail in
most elementary textbooks on probability, they are not discussed in de-
tail here. However, a summary of the more common simple paramet-
ric distributions is given in Section 4. 3.

3.3.2 Complex Parametric Distributions

As used in this volume, complex parametric distributions are
defined as the Weibull, Johnson, and Pearson distribution families.
The functional form of these distributions is somewhat complicated,
and three to five parameters are often required to define the specific dis-
tribution. Reverting to the analytic procedures to generate these dis-
tributions is most necessary when a simple distribution cannot be jus-
tified and the simulation results are dependent upon rare events,

Rare events are usually related to the tails of the distribution., For
certain events or processes to be simulated sufficient observations
to accurately define the tail regions may not exist. In such cases,
one usually employs smoothing techniques utilizing parametric func-
tions to extend or infer the behavior of the tail regions from available
data.

Using a complex parametric distribution can be viewed as a
convenient way of smoothing the raw data and expressing the smoothed
data in functional form. These three families admit almost every type
of probability distribution, one major exception being composite dis-
tributions made up of several distinct populations, e.g., multimodal
distributions. In fact most of the simple parametric distributions are
special cases of a Weibull, Johnson, or Pearson distribution.

16



If the reader is interested in a further discussion of these dis-
tributions, background information is contained in Appendix A. The
material there is not, however, essential for understanding the prin-
ciples discussed in Part I or the methods described in Part II.

3.4 GOODNESS-OF-FIT TESTS

After initial selections of a distribution for a Monte Carlo
application and where sample data are available, it is usually worth-
while to try and validate or substantiate these choices. The validation
step of the selection procedure is especially critical when it has been
determined that the Monte Carlo result will be sensitive to distribution
selection. More generally, developing confidence in the distributions
used in any simulation adds to the confidence in the total simulation in
addition to aiding in the overall understanding of the process.

One of the most useful methods used in validation is called
goodness-of-fit-tests., These are statistical procedures for testing
whether sample data can reésonably be expected to be representative
of (drawn from) a particular probability distribution. Essentially,
there are two such tests which have found wide application since they
can be applied to any distribution. These are the Chi-Square test and
the Kolmogorov-Smirnov test. A brief description of each of these two
tests is presented below. In addition there are a number of specialized
tests such as the W-test for a normal distribution and the WE -test for
an exponential distribution which are useful. Specific details for apply-
ing these tests are contained in Part I, Section 9.

One word of caution should be noted in using these tests. The
statistical inferences based on these tests rely on asymptotic proper-
ties. Thus a fair amount of data is required to obtain valid interpre-
tations. Where limited data are available or many erroneous data

17



points are believed to be in the sample, the usefulness of these tests
may be questionable.

Chi-Square Test: This common goodness-of-fit-test is made by

subdividing the data into groups or intervals and comparing the num-
th

ber of actual observations Ai inthe i interval to the number expected Ei
as computed from the assumed distribution. The statistic employed in
this method is
2
R s ek
T = T

Under the null hypothesis (observations are from the assumed distribution)
the distribution of this statistic asymptotically approaches a Chi-Square
distribution with n-1 degrees of freedom.

The Chi-Square test has certain obvious shortcomings. In addi-
tion to being sensitive to sainple size, this test is also sensitive to data
grouping. Different investigators conducting this test will tend to get
different results. One requirement in using the test is that each cell
or subgroup should have a sufficient number of observations in it.
Some authors (27) feel that a good test requires at least twenty obser-
vations per cell and that there should also be between five and twenty
cells.

Kolmogorov-Smirnov Test:* This goodness-of-fit test is made

by computing the maximum difference between the sample cumulative
distribution function and the assumed distribution function. This dif-
ference, under the null hypothesis, has a known asymptotic distribu-
tion which is available in table form (see Appendix B). The Kolmogorov-
Smirnov is generally considered to be more sensitive than the Chi-Square

18



test and also has the advantage that arbitrary data grouping decisions
are not required. Its disadvantages are that it is usually more com-

putationally difficult to apply, and if the hypothesis is rejected, the
reason for the rejection is less clear.

19



PART O
SELECTION OF DISTRIBUTIONS
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4, DISTRIBUTION SELECTION PROCEDURES

This section presents a systematic set of procedures for selecting
the most representative model for a random variable in a simulation.
The procedures selected depend on tvro types of knowledge of the random
variable in question. These are:

1. Empirical Data (Quantitative Observations)
2. Understanding of the Random Process (Qualitative A Priori
Knowledge).
Based on the degree of knowledge in each category, a set of procedures
for selecting a distribution has been constructed. By following a particu-
lar procedure the most appropriate probability model can be easily
selected.

The initial discussion in this section is devoted to a discussion of
selecting the appropriate procedure to be used based on the degree of
available knowledge of the random variable in question. Secondly, this
section is devoted to presenting a brief guide to using the remaining sec-
tions of Part II. This section is concluded with a table listing all the
candidate distributions considered here. This table also summarizes the
characteristics of these distributions. The rest of Part Il is concerned with
how one performs the specific operations which lead to selection of the
appropriate probability distribution model.

4.1 PROCEDURES FOR SELECTING DISTRIBUTIONS

The particular selection procedure for a probability model is de-
termined by the extent of empirical data and knowledge of the random
process in question. The extent of empirical data can, for convenience,
be broken into three categories: none, some, and ample. This cate-
gorization is given in Table 4. 1.

23
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TABLE 4.1
Extent of Empirical Data (Observations)

Category 1 2 3
Description none some ample
Number of 0-5 5-20 over 20
Observations

The extent of knowledge of the random process is, for conveni-
ence, broken into four categories: no knowledge, qualitative knowledge,
reasonably good ideas, and reasonable certainty. These categories
are described further in Table 4. 2. It should be clear that the more
data and the greater the a priori qualitative knowledge available, the
easier the selection process is and the greater the certainty of obtain-
ing a good probability model.

TABLE 4.2
Extent of Qualitative Knowledge of the Random Process
Category 1 2 3 4
None: Qualitative: Good ideas: | Reasonable
certainty:
Description | No Some Reasonably Good basis
qualitative | knowledge of | based for expect-
knowledge | the random expectations | ing the dis-|
of the process, i. e, | that the tribution to
random continuity, random be some
process range, variable is known
symmetry, one of a few | family
shape of known
distribution, { families
likely values,
etc.
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A concerted effort should be made to use all a priori knowledge.
This means that all the qualitative characteristics listed under Category
2 in Table 4. 2 should be written down, if known. This will also help
in sketching a probability density or frequency curve. Table 4.3 should
also be consulted to determine if Categories 3 or 4 are appropriate.
Table 4.3 lists all of the probability distributions considered here. These
are arranged in two groups, the simple parametric distributions and the
complex parametric distributions. This table also summarizes the
characteristics of these distributions. Table 4.3 is very useful as a
reference in seiecting a prbbability distribution since almost all of the
information needed for selection is presented. To this end, therefore,
the columns in Table 4.3 entitled Comments and Justification and Applic -
ations may give characteristics that fit the problem at hand. Any
distributions that appear appropriate shou'd be listed so that knowledge
at a level of Category 3 or 4 can be used.

Once the categories for empirical data and knowledge of the
random process have been established from Tables 4.1 and 4.2, a specific
selection procedure can be identified from Table 4.4. Table 4.4 is
simply a matrix indicating all possible combinations of data and knowledge
categories. For each combination, a figure number is indicated. Each
figure presents the details of the particular selection procedure that it
represents.

A discussion of the selection procedures presented in Figure 4.1~
4.12 and how that material is used is contained in the following section
(40 2) . ’
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TABLE 4.3
Sequence of Activity Selection (By Figure Number)

Knowledge of Random Process Category

Empirical Data Category
2

1 2 3 4
Figure Figure Figure Figure
= 4.1 4.2 4.3 4.4
Figure Figure Figure Figure
4.5 4.6 4,17 4,8
o Figure Figure Figure Figure
4.9 4.10 4.11 4.12

4.2 SELECTION TECHNIQUES

The following list provides a brief description of each selection
technique used in the selection procedures and provides the location of

further detailed discussion.

Sensitivity Analysis -

(Section 5.)

Graphical Anmalysis -

(Section 6. )

Analytic Curve Fitting ~

(Section 17.)

Parameter Estimation -

(Section 8.)

Involves performing the simulation study
using several differ nt distributional
assumptions or parameters to examine the
effect it has on the final results,

Involves plotting a histogram and/or using
probability paper to judge what distributions
appear likely. This analysis may reject
some ideas as inappropriate or suggest
several likely distributions. This analysis
applies primarily to the simple or common
distributions.

Refers to fitting the data to one or more of
the complex or uncommon distributions such as the
Weibull, Johnson, and Pearson.

Is the task of estimating the values of the
parameters of a given distribution family
to obtain the best fit with the data.
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Goodness-of-Fit - Tests are used to determine if the candi-
(Section 9. ) date distribution is an adequate represen-
tation of the actual random process based

on the data available.

Histogram - If all likely distributions fail the goodness -
(Section 6.) of-1it tests fail, a histogram should be used.

These techniques can best be applied by referring to the appro-
priate section. After app: ~ation of any technique, refer to the appropriate
figure to determine subsequent selection techniques to employ, if any.
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Figure 4.1 Figure 4.2

No Data, No Knowledge No Data, Qualitative Knowledge
Sensitivity Graphical
Analysis Analysis

(Table of
Shapes)
Sensitivity
Analysis
Figure 4.3 Figure 4.4
No Data, Good Knowledge No Data, Certain Knowledge
Parameter Parameter
Estimation stimation
rbit"ary Arbitrary
ame Parameter
ction Selection)
Senmtivity Sensitivity
Analysis Analysis




Figure 4.5

Some Data, No Knowledge

Graphical
Analysis

'

Parameter
Estimation

'

Goodness-
of-Fit Test

(possibly)

Figure 4.7

Some Data, Good Knowledge
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Figure 4.6
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Sensitivity
Analysis

Figure 4.8
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Figure 4.9

Ample Data, No Knowledge

Graphical
Analysis

'

Parameter
Estimation

{

Goodness -~
of-Fit
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+ Reject

Analytic Curve
Fitting

'
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Estimation

'

Goodness-
of-Fit Test

—= Accept
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Figure 4.10

Graphical
Analysis

See
Figure 4.11

See
Figure 4.9

Ample Data, Qualitative Knowledge
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Figure 4.11

Ample Data, Good Knowledge
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5. SENSITIVITY ANALYSIS

The objective of sensitivity analysis is to determine the extent to
which ihe final results of the simulation study are sensitive to a given
probability distribution. To this end two general guidelines can be given.

The first is to attain a determination of sensitivity to the parame-
ters of a distribution. It might be reasonable to vary the parameters to
some extent in both directions. Suppose, for example, that a normal dis-
tribution with mean 100 and standard deviation 20 is postulated. Then
five runs might be made to test sensitivity of the final simulation results
to these parameters as follows [(mean, standard deviation)]: (100, 20),
(110, 20), (90, 20), (100, 18), (100, 22).

A second sensitivity test that can be performed is one of shape
of parametric family: it may be reasonable to make several simulations
with different probability distributions, especially if unlikely events are
important to the simulation results. In this case the shape of the tail of
the distribution is important. Suppose, for example, that a gamma dis-
tribution has been chosen: then a lognormal or Weibull might also be tried,
since these have similar shapes.
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6. GRAPHICAL TECHNIQUES

There are two graphical techniques that are applicable here.
The first deals with the empirical histogram and the second deals
ing with the 'empirical cumulative distribution polygon. Bath tech-
niques can be quite useful in selecting a good functional {it to data.
These graphical techniques are intended primarily for use in select-
ing one of the common or simple distributions. Although graphical
techniques can be helpful in the selection of a complex distribution,
this is discussed as analytical curve fitting in Section 7.

Graphical techniques can often suffice to determine a satis-
factory probability model for a simulation variable. This is especi-
ally true if the simulation results are not sensitive to rare events of
the several random variables. An example is given in Section 6.3 to
illustrate the histogram and cumulative distribution polygon methods.

6.1 USING THE EMPIRICAL HISTOGRAM

The empirical histogram can be used to determine what dis-
tributions are likely to fit a given set of data. This can best be
accomplished by a visual comparison to find curves representing
probability distributions that are similar to the data. The approach
taken in this section is to find such visual fits by examining a series
of figures representing the density function of most of the simple
distributions.

The procedure is very straightforward. First plot the histo-
gram from the data available. In some cases it may be helpful to

39
Preceding page blank



sketch a smoothed version of the histogram, especially if the cells
of the observation groupings are large or the data are few. Then ex-
amine the shapes given in Figure 6.1 and select those distributions
whose densities are similar to the histogram. (Figure 6.1 does not
include the Weibull, Johnson, or Pearson distributions. For these
distributions, see Section 7.) It is also useful to rank the selections
according to how good the fit is.
6.2 USING THE EMPIRICAL CUMULATIVE DISTRIBUTION
POLYGON
An alternate technique is to use the cumulative distribution
polygon in conjunction with probability paper. The horizontal axis of
this paper represents the values of the variable under investigation;
the vertical axis is a probability scale. The spacing on the vertical
axis is constructed for a given probability family so that a cumulative
distribution function belonging to that family will appear as a straight
line on the paper.

The graphical method is quite general and can be applied to
any known distribution; however, the probability paper which is com-
mercially available is limited to the more commonly encountered dis-
tributions such as the normal (see Figure 6.2), lognormal, extreme
value, chi-square, gamma, binomial, and Weibull. *

The procedure for using this graphical method is extremely
simple although interpretation of the results is somewhat subjective.
The sample cumulative distribution is plotted on the probability paper
corresponding to the theoretical distribution of interest. K the points

*See, for example, TEAM Special Purpose Graph Papers, Box 25,
Tamworth, N.H. 03886, also K+E papers.
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fall on a straight line the theoretical distribution is accepted as rep-
resentative of the data. If the line is badly curved, other distributions
can be tried. The nature of the curve often suggests distributions
which might be of better fit.

Another useful aspect of the graphical procedure is that esti-
mates of the distribution's parameters can be read directly off the
graph. For example, on normal probability paper, the difference
in variable value between the .50 probability point and the . 84 prob-
ability point on the fitted line corresponds to one standard deviation.

6.3 NUMERICAL EXAMPLE

An example will illustrate the use of these techniques. The
data for the example is given in Table 6.1. Observations ranging
from 66. 75 to 75.25 have been divided into seventeen equal inter-
vals or cells of 0.50 each. The frequency with which observations
fall within each cell has been tabulated and summarized. This data
was then plotted in Figure 6.3 to produ:e what is generally referred
to as a histogram.

The histogram serves two purposes. First, it provides vis-
ual evidence on which to base preliminary selection of a distribution.
Second, in the case of limited data, it may provide as good an esti-
mate of the variability of the process as any other more elaborate
approach.

On the basis of its symmetry and bell shape, the histogram
of Figure 6.3 appears .ypical of data from a normal distribution.

Making an assumption of normality, it is possible to proceed to the
application of other quantitative methods to determine its validity.
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TABLE 6.1
Sample Data

Cumulative
Cell Relative | Cumulative Relative
Boundaries Frequency Frequency | Frequency Frequency
66.75-67.25 2 0. 005 2 0.005
67.25-67.175 2 0.005 4 0.011
67.75-68. 25 5 0.014 9 0.025
68.25-68.175 6 0.016 15 0.041
63.75-69. 25 7 0.019 22 0.060
69.25-69.75 24 0.066 46 0.126
69.75-70.25 36 0. 099 82 0. 225
70. 25-70.75 48 0.132 130 0. 357
70.75-71.25 64 0.176 194 0.533
71.25-71.75 51 0.140 245 0.673
71.75-72.25 41 0.113 286 0.786
72.25-72.15 32 0.088 318 0.874
12.75-73. 25 24 0. 066 342 0.940
73.25-73.75 12 0.033 354 0.973
73.75-74.25 5 0.014 359 0.986
174.25-74.175 4 0.011 363 0.997
74.15-75. 25 1 0.003 364 1.000
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The data given in Table 6.1 can also be plotted on normal proba-
bility paper. This will verify the assumption of a normal distribution and
also give the appropriate parameters for the distribution if the assumption
of normality is accepted. The cumulative relative frequency (sample
cumulative distribution function) when plotted on normal probability paper,
shown in Fig. 6.4, turns out to be reasonably linear. Thus it can be con-
cluded, at least tentatively, that the data in Table 6. 1 has been drawn from
a normal population. For many applications this will suffice to identify a
satisfactory distribution. Note that the mean (u) and the standard devia-
tion ©) can also be estimated from the graph.

Rather than go through the process of grouping the data into class
intervals or cells as in Table 6. 1 one can plot the data directly onto proba-
bility paper in the following way. The n observations X19Xgye ooy X are
placed in ascending order (ranked) such that:

<---<Xx

X(1) = *(2)= X(3) (n-1) =X(n) *

To each x(i) associate the ordinate value y(i) = ﬁ and plot the
ordered pairs (x(i), y(i)) on the probability paper. This procedure is
extremely fast, with the exceptim of having to rank the n observations.
Therefore, it is probably most useful for sample sizes in the range 1-50,
depending of course on how proficient one is at ranking observations.
Many excellent examples of the use of probability paper for extreme
value distributions may be found in Gumbel, (14)

This example is concluded with a visual verification of the selection
of a normal distribution to fit the data in Table 6.1. Figure 6.5 gives the
same information as Fig. 6.3 with the addition of the normal density curve
scaled to the frequency polygon.
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7. ANALYTICAL CURVE FITTING

Analytical curve fitting encompasses a variety of techniques to
smooth an empirical histogram for use. As discussed in Part I, the
purpose of analytical curve fitting is to obtain a reasonable functional
approximation of the empirical histogram to be used in a simulation.

For the purposes of Part II of this volume, analytical curve fitting
will be restricted to the use of three families of probability distributions.
These are the Weibull, Johnson, and Pearson distributions. The reader
who is unfamiliar with these distributions may wish to refer to Appendix A
to find a background discussion of these three distributions. The Weibull
family is the easiest to work with and the Pearson family is the most dif-
ficult to work with. It is, therefore, recommended that analytical curve
fitting be tried first with the Weibull, then if need be with the Johnson,
and finally if necessary with the Pearson distributions.

The procedure for selecting one or more of these families is based
on Table 7.1. The use of Table 7.1 is facilitated if qualitative information
about the random processes and a sketch of the probability density are avail-
able. Once one or more families have been chosen, the selection procedure
outlined in Section 4 should be followed.

Since using the Weibull, Johnson, or Pearson distribution is tanta-
mount to using a smoothed histogram, some consideration should be given
to using the histogram itself rather than a distribution. This is especially
true if the histogram is drawn from an ample set of data, if the Weibull,
Johnson, and Pearson curves do not give reasonably good fits, or if the
histogram is multimodal. In the latter case the underlying population may
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actually be several distinct populations, and unless the user is prepared
to separate that population by techniques not discussed here, using the

histogram may be most expedient.

Characteristics of Complex Probability Curves

TABLE 7.1

Number of General Figures for
Family Name | Parameters Characteristics Shapes of Densities
Weibull 3 Unimodal, finite left bound, Figure 7.1
tail to right

Johnson 4 Bounded or unbounded, Figures 7. 2-7.3

(plus choice |variety of shapes,

of three mostly unimodal

functions)
Pearson up to 4 Great variety of curves Figure 7.5

(plus choice

of twelve

functions)
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Fig. 7.3, Johnson Probability Density Functions for SL (e =0)
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8. PARAMETER ESTIMATION

Once a specific type from a family of probability distributions has
been tentatively chosen to model a random variable, specific parameters
for the distribution must be chosen. These parameters should be chosen
so that the resulting specific distribution will best fit the data and knowl-
edge available. This section is devoted to finding the specific parameter
values based on the empirical data (observations) available.

If no data is available, the parameters must be chosen arbitrarily.
In this case no estimation procedure exists that is better than the analyst's
intuition and judgment. If data is available, the parameters can be estimated
based on the sample of data. Estimates, in this case, always begin with
calculation of certain sample statistics which are give. 1 Section 8. 1.
This section should be used in conjunction with the directions given in
Section 8.2. This latter section gives formulas for estimating the specific
parameters for all of the distributions considered. Since not all the sample
statistics in Section 8. 1 are needed for all the distributions and parame-
ters in Section 8.2, Section 8. 2 should be referred to before calculating
sample statistics.

8.1 CALCULATING SAMPLE STATISTICS

The sample statist'cs given in this section include the sample mean,
median, variance, skewness, kurtosis, 3rd moment, and 4th moment.
To establish some standard notation, we define the following symbols:

n = number of data points

ith data point (observation) fori =1, 2,..., n .

X
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The sample statistics are calculated as follows:

Sample Mean  (symbol X)

Sample Mediaa

First rank the observations from smallest to largest. If n is odd,
the median is given by the value of the [(n+l)/2]th observation. If n is
even the median is given by the mean of the [n/2]th and [(n/2) + l]th
observations.

Sample Variance (symbol 32)

n
o - [Z <xi-m2] /n
i=1

or, more conveniently

=(§; xf>/n -x .

Sample mth Centralized Moment (symbol um)(only kg and p 4 needed)

1]
um = § (xi-i)m /n

Sample Skewness (symbol Bl)

pl = “3/53
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Sample Kurtosis (symbol B,)

32 = “4/34

Interpretation of the last two estimators is usually in terms of how well the
data fits the normal distribution. If the skewness is close to zero and the
kurtosis is close to three the normal distribution should provide a good
approximation to the distribution. Figure 8.1 gives an interpretation of

the skewness value. Zero indicates a symmetric distribution, negative
skewness means a long left tail, positive values a long right tail. Figure 8.2
illustrates the kurtosis measure. If the kurtosis is greater than three the
distribution is more peaked than the normal (curve C). If it is less than
three the curve is flatter than the normal (curve A).

8.2 CALCULATING PARAMETER ESTIMATES

This section is divided into two parts. Section 8. 2.1 deals with
the simple distributions. This section will be the one more commonly
used. Section 8. 2.2 is more complicated and deals with estimating parame-
ters for the complex distributions.

8.2.1 Simple Parametric Distributions

Refer to Table 4.3 to obtain the recommended parameter estimates
for the selected distribution. Use Section 8. 1 to obtain the sample statis-
tics required.

8.2.2 Complex Parametric Distributions

As can be seen in Table 4.3 , estimating parameters for the Weibull,
Johnson, and Pearson distributions is more involved than for the simple
distributions. The reason for this is that the simple distributions generally
have one or two parameters, whereas the complex distributions have 3 to 5
effective parameters. Background for the material which follows can be
found in Appendix A.
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Fig. 8.1. Skewed distributions
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8.2.2.1 Weibull
The basic three-parameter Weibull distribution has a density given

by:
_ N1 o\
f(x) = ;"Z(XT‘) exp [—(’-‘1——‘) ] , X2e€
=0 X<e€
where:
f(x) = Weibull probability distribution
¢ = location parameter
A = scale parameter

n shape parameter

In most applications the location parameter, ¢, is known. In
cases where it is not known, it can be estimated from the observations:

€ = min[xi]

Better estimates of ¢ can be obtained using techniques developed hy Dubey;(s)

however, the improvement is not usually sufficient to warrant the extra
effort involved.

The maximum likelihood estimators for the three-parameter Weibull
disiribution result in a set of equations that can be solved by iterative
methods which are very tedious to perform. If the location parameter is
known or estimated, the maximum likelihood equations for X and 7 can

be solved fairly easily(sl)

n /]

& L
-0
n =

2y

and are given by:

mx, =0 (8.1)

3=

i
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ard

X = @l/mi/m (8.2)
where:

?1 = Maximum likelihood estimator of n

A = Maximum likelihood estimator of A

Equation 8. 1 can be solved by the Newton-Raphson iterative procedure.

1 5 S
— — -
.. Mmoo
Meet = M 2
1+s:s:;(:§)
AT
where:
ilnx
S. =
1 ) i
o -
M
sl;: X

n
Sl; =2 (In xi)xi k

sl; =§ (In xi)zxink

The estimate 7 is biased and should be corrected using the unbiasing fac-
tors in Table B-1of Appendix B. Then, the estimate for i can be obtained

directly from (8.2). Further improvement can be obtained by using Menon's
(38)

=]

estimators.
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8.2.2.2 Johnson Distributions

As indicated in Table 4.8, there are three Johnson distributions. These

three are generally denoted SL, SB, and SU because these distributions
are related to the normal distribution through a logarithmic transformation
(SL), bounded transformation (SB), and unbounded transformation (SU).
The problem of estimating parameters of the Johnson distribution thus be-
comes a two-step procedure. First determine which distribution to use, then
estimate the appropriate parameters.

The probability density functions for the three Johnson distributions

2 2
SL: fl(x) = _ﬁ_?g(;:) exp {- %[%+ Ln(x-e)] } ; X2e¢

2
. _ 1 A 1 X-
g fo® = Jor (x-€) (\-x+¢) exp {' 2 [7 +1 4n (A-x:c)] }

€< X< €+ A

S.: f.(x) = N 1
> ~/2_ﬂ /(x-:)z+x2

2 71/2) \
exp -%(yup&n {(5)%5)+[("—;£)—+1] })

<X < ®

In these distributions n and y are shape parameters, ) is a scale parame-
ter, and ¢ is a location parameter. These must satisfy:

n >0, A>0, =<y, e<+o

In Section 8.1, expressions are given for the skewness, Bl’ and
kurtosis, 52, of the sample data. These are used to determine which
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distribution, SL’ SB’ or SU to use. This can be accomplished by plotting
the sample Bl and By on Fig. 8.3. The location of the sample point

(Bl, Bz) indicates the distribution to seiect. One warning must be given.
however. Figure 8.3 is accurate for categorizing distributions given the
true value of Bl and 52' The values for Bl and 52 derived from the
sample (Section 8.1) are estimates of the true values. Thus if the sample
point falls near the edge of a region in Fig. 8.3, i.e., near the SL line,
then it would be prudent to try all three Johnson distributions or to select
one or more based on possible boundedness of the random variable in ques-
tion. Examining the density functions given above will aid in this

determination.

The parameter estimates for the Johnson distributions are given be-
low. The estimates of the John3on parameters are not maximum likelihood
estimates, except for the SL ( ¢ known) case, however they are the most
practical to use. The approach taken is to use percentile points from the
data. Recall that a 100 a percentile point for the population, x o 18 that
value of x for which P[x < x,]=a. We assume that the random <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>